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Turbulent air flow over a surface gravity wave of small amplitude is studied 
analytically on the basis of a family of rapid-distortion turbulence models. Results for 
the wave growth rate do not depend sensitively on the specific choice of these models. 
However, the agreement with results based on a so-called truncated mixing-length 
model (Belcher & Hunt 1993) is poor, despite physical similarity of the models. The 
present analysis also shows that the use of turbulence models based on rapid-distortion 
theory leads to significant underestimation of observed growth rates of high-frequency 
waves. 

1. Introduction 
In the theory of generation of surface gravity waves by turbulent air flow a critical 

question is the choice of turbulence model used to describe the interaction of the wave 
and the turbulence. Many such models, of varying complexity, have been developed 
during the past twenty-five years, see e.g. Miles (1993) for a brief review. 

Recently, Belcher & Hunt (1993, hereinafter referred to as BH) introduced a 
turbulence model based on results of rapid-distortion theory (Britter, Hunt & Richards 
1981), which differs essentially from the previous models. According to BH, the 
classical eddy viscosity model (and modifications thereof), applied throughout the 
domain of air flow, are inappropriate because the wave-induced Reynolds stresses in 
the region away from the water surface (the so-called outer layer) are not properly 
described. 

In $2 we summarize the Belcher-Hunt model, which implies truncation of the mixing 
length in the outer layer. Because of the discontinuity in this model, we propose a 
modified version which is continuous throughout the flow domain but is otherwise 
based on rapid-distortion theory. To study the sensitivity of the wave growth rate to 
the specific choice of turbulence model, we introduce a family of closure schemes, 
where the magnitude of the stresses in the outer layer may be varied substantially, while 
the stresses in the layer close to the water surface remain almost unchanged. 

In $ 3  this family of closure schemes is studied analytically, which leads to closed- 
form expressions for the wave growth rate in terms of the model parameters. The 
results thus obtained are compared with those derived by BH. In addition, comparisons 
are made with observed growth rates (94). For details of the calculations the reader is 
referred to van Duin (1996, hereinafter referred to as I) and to an internal 
memorandum (van Duin 1994). 
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2. The turbulence models 
We start from the linearized Reynolds equations for air, written as 

au dU aP agll  a g 1 2  u-+-v = --+s-+e-, 
ax dz ax ax a Z  

In these dimensionless equations the coordinates are scaled by L = l / k  (where k is the 
horizontal wavenumber), and the velocities by V (where V is the wind speed at the 
reference height L). The pressure p was scaled by p V 2  (with p the constant air density), 
and the wave-induced Reynolds stresses by pu* V (with u* the friction velocity). The 
parameter s is defined by s = u*/V and is assumed small. The horizontal x-axis is 
aligned with the unidirectional mean flow U, which varies with height z. The (x,z) 
reference frame moves with the phase velocity of the wave. 

It will be convenient to introduce the transformation z = y + qw(x, t),  where qw is the 
surface elevation, and y is the height above the moving water surface. The stream 
function $, defined in the orthogonal coordinate system, is written as $(x, z, t )  = 
$(y)+$(x,y,t),  where $ is the x-averaged part (for fixed y ) ,  and $ is the 
perturbation part; cf. I. 

In the so-called intermediate layer y = O(e), where the turbulence is supposed to be 
in a local equilibrium, BH introduce the mixing-length model 

g 1 2  = -2KY$yy, g 1 1  = -el C I 2 ,  g'22 = -e2g12, (2.3) 

rewritten in the present notation, where - $y is the horizontal perturbation velocity in 
the displaced coordinate system. In this turbulence model of Townsend (1976) the 
normal stresses are proportional to the shear stress, where el and e2 are positive model 
constants. 

According to rapid-distortion theory, the mixing-length model ceases to be valid in 
the outer layer y = O(1). For this reason, BH introduce a so-called truncated mixing- 
length model, which implies that the mixing length is truncated in this layer. 

The discontinuity in the truncated mixing-length model (or Belcher-Hunt model) 
leads to ambiguous results (9 3). Therefore, we introduce the following modification: 

112 2n -I 
g 1 2  = -2KJa +(hY/t. 1 1 1Cryy, g 1 1  = -el g 1 2 ,  g 2 2  = -e2 g 1 2 ,  (2.4) 

which is valid throughout the domain of air flow. Here h is a model constant of the 
order of unity, and n is a positive integer, which serves to investigate the dependence 
of the wave growth rate on the choice of turbulence model. As will be shown, the 
models are identical in the intermediate layer. In the outer layer we have cSf = O(s"ak), 
where ak is the wave slope. This order of magnitude is in agreement with rapid- 
distortion theory; cf. formula (3.4) in BH. For large IZ the outer layer is inviscid, as in 
the Belcher-Hunt model. 

3. Analysis of the turbulence models 
In referring to I for details of the calculations, it will be convenient to write the water 

displacement as qw = sA exp (ix), with A = O(1). This corresponds to perturbation 
quantities that are O(e). Since the present theory is linear, the factor A exp (ix) will be 
divided out. 
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The stream function in the outer layer is written as $(x, z, t) = &z) + $(x, z, t), where 
5 is the x-averaged part (for fixed z), and 6 is the perturbation part. Then (2.1) and 
(2.2) reduce to the single equation 

The above decomposition is expanded according to 

&z) = eo + €el, $(x, z, t) = €8, + €28, + €38,  + . . . . ( 3 4  
The expressions for go and O1 are given by (A 1) in the Appendix; cf. I(4.8) (i.e. 
equation (4.8) in I) with Q = 0 and cx. = 1, where c denotes the dimensionless phase 
velocity. The perturbation part determines the Reynolds stresses according to (2.4). 
For the shear stress in the outer layer we obtain 

(3.3) 
In view of (3.3) the right-hand side of equation (3.1) is O(e3), which implies that the 

expressions for 8, and 8, in (3.2) are the same as in I ;  cf. (A 2) and I(4.7), I(4.9). 
Since we are mainly interested in the determination of the wave growth rate, only the 

imaginary part of the pressure needs be considered (I). Then it will be convenient to 
introduce the notation zr = iImz for any complex z, and z ,  is called the reduced (part 
of) z .  

The equation for 8, has a reduced solution of the form (A 3), where h, is a real 
constant, and S,, is the Kronecker symbol. With (A 1) and (A 2) this determines the 
reduced pressure in the outer layer to O(e3). When expressed in terms of the transition- 
layer variable <, defined by < = y/el/', we obtain 

CT12 = - 2KZ€1+n(hZ)-2n 8,,, + . . . . 

(3.4) 

In the transition layer, < = O(1), the perturbation stream function is written as 

@tl  = '"'"@l(<> +"@2(<> + (85/2 log €1 @,(<I + E5'2@4(<> + (t.3 log €1 $.,(<I + E 3 $ 1 5 ( < )  + . .. . 
(3.5) 

In deriving the equations for the various $&), it turns out that @,, @z, $, and $, are 
in fact solutions of Rayleigh's equation. The equations for @4 and $6, on the other 
hand, are modified by the Reynolds stresses. The solutions are given by (A4) and 
(A 5). The reduced pressure gradient in the transition layer is of the form 

In the intermediate layer, y = y / e ,  the perturbation stream function is written as 

$im = €'T~(T) + (c3 log €1 ~ 3 ( 1 1 )  + c3~4(7 )  + . . . . (3.7) 
The equations for cpz and p), have solutions of the form (A 6a, b) and are the same as in 
I ;  cf. I(5.8) and I(5.9). The equation for q4, given by I(5.4), has a solution of the form 
(A 6c), where w,(y) satisfies (A 7). The reduced pressure gradient reads 
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The lower-order solutions are independent of any closure assumptions. For small c 
and slow waves (the conditions for validity of the present analysis) it is then expected 
that the predicted vertical-velocity profiles agree with measurements. The results in van 
Duin & Janssen (1992) seem to confirm this. 

2w 

The pressure in the intermediate layer is of the form 

(3.9) 1 pim = -ew2+e2 W2v+-+W(C11+2iK) +..., 
( K  

with al, = - 2 i ~ ,  determined by matching (3.7) with (3.5). This implies that pr = o(c2) 
in the intermediate layer. Thus, in order to find the expression for the imaginary part 
of the pressure in this layer, which determines the wave growth rate, the higher-order 
terms in (3.9) should be known. With (3.4), (3.6) and (3.8) we obtain 

2iKW 
h2 

p ,  = (e3 log (1 / e ) )  ~ 6,, + e3 - iwh, + iwe, a2 wg(v)  

where the constants h, and a2 are still to be determined (94). 
The truncated mixing-length model (2.3) corresponds to the model (2.4) for n = 0, 

where in (2.3) the outer layer is inviscid by construction. For reasons mentioned below 
(3.3), the outer solution (3.2) then remains of the form (A 2), (A 3). The expression 
(3.4) for the reduced outer-layer pressure also remains the same. The transition layer 
needs not be taken into account in this case because the intermediate-layer solution can 
now be matched directly with the outer solution. Then the former solution remains of 
the form (A 6), where matching leads to alr = 0 because of the real expressions (A 2). 
This implies that the reduced intermediate-layer pressure is 2 ~ w e ~  at leading order, in 
view of (3.9). On the other hand, (3.4) implies that the reduced outer-layer pressure is 
~ ( € 3 ) .  

Based on this result we conclude that the outer-layer pressure cannot be matched 
with the intermediate-layer pressure because the imaginary parts are of different order, 
which implies a discontinuity in the shear-stress gradient across the outer and 
intermediate layers. 

4. The wave growth rate 
The growth rate coefficient is defined according to 

( k c ~ ) - l  aE/at = s(U*/c),p, (4.1) 
where E is the energy of the inviscid water wave and s is the air-water density ratio. 

To determine the growth rate coefficient, the constants h, and 01, in (3.10) should be 
known. Matching the solution 1(3.1), I(3.7) in the so-called inner layer (where 
molecular viscosity may not be neglected) with (3.7) yields a2 = 4i. Matching (3.7) via 
(3.5) with the outer solution, we obtain h, = -4 + 2/w + ( 2 ~ / h ~ )  (y + log 2) a,]. 
Matching the normal stress with the pressure at the surface elevation (I) then leads to 
the leading-order expressions 

(4.2) 
2KW p = log(l/e)-+ ... (n  = l), h2 

/ ? = - 2 + 4 ~ + -  2iw J: ~ :tin + . .. (n  = 2,3,4, . ..). (4.3) 
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FIGURE 1. Variation of the growth rate coefficient ,8 with the parameter E (for slow waves). Solid lines: 
the result (4.3) with h = 1;  dashed line: the result (4.4) obtained by Belcher & Hunt (1993). 

Thus, the wave growth rate (4.2), (4.3) is asymptotically largest for n = 1 and 
decreases with increasing n. This corresponds to decreasing magnitude of the outer- 
layer shear stress (3.3). However, a significant change in the magnitude of this stress 
with varying n only leads to a relatively small change of the wave growth rate (see figure 
1). The validity of rapid-distortion turbulence models is restricted to slow waves (BH), 
which corresponds to w z 1. Then the growth rate is largest for n = 1 if e < 0.017, 
which corresponds to unrealistically small drag coefficient. 

Excluding the special case n = 1, we conclude that the wave growth rate does not 
depend sensitively on the choice of rapid-distortion turbulence model. The reason for 
this is that, typical of such models, the interaction between the wave and the turbulence 
mainly takes place in the layers close to the water surface, where the turbulence is in 
a local equilibrium. In these layers, with y = O(e), the turbulence model (2.4) actually 
reduces to Townsend's mixing-length model (2.3). This is also readily seen from the 
expression for the shear stress in the intermediate layer. The leading-order expression 
for this stress, given by crI2 = -2e2~rp+, ,  is indeed independent of n because the 
constant a2 in (A 6c)  is independent of this parameter, see below (4.1). Only in the 
higher layers, where distortion of the eddies takes place, are the models (2.3) and (2.4) 
different. 

For c < 1 (slow waves) BH obtain the result 

R+logh 
R + log L" p = 2(2w4+ w2- 11, w= R = -log (kz,), (4.4) 

with h2(R+logh) = 1, [(R+logt) = 0.32, where zo is the roughness length; cf. Miles 
(1996). 

In the limit n+ GO the model (2.4) and the Belcher-Hunt model are physically the 
same. Thus, it is expected that in this limit the wave growth rates (4.3) and (4.4) are of 
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the same order of magnitude. It turns out, however, that smoothing the discontinuity 
leads to a significant reduction of the wave growth rate. This is depicted in figure 1, 
where E = K/R corresponds to the square root of the drag coefficient. Only for very 
small e (or very smooth flow) is there some agreement. 

Based on several field and laboratory experiments, Plant (1982) derived an empirical 
expression for the wave growth rate coefficient, which (due to scatter in the data) may 
vary between 20 and 60. When compared with the maximum value p ,  = 3.25, obtained 
from (4.3) for n = 2, h = 1 and c j, 0, we conclude that the predicted high-frequency 
wave growth rates are significantly smaller than the observed values. This also applies 
to a related second-order closure model of Launder, Reece & Rodi (1975), which is 
expected to capture the effects of distortion in the outer layer (Mastenbroek et al. 
1996). 

The above results do not imply that rapid-distortion turbulence models are 
physically less relevant in the theory of surface-wave generation. Although a mixing- 
length model proves to be appropriate in layers close to the water surface, the predicted 
relatively small stresses (compared with the 'classical' turbulence models) in the outer 
layer seem to agree qualitatively with measurements, see e.g. Mastenbroek et al. (1996). 

A more rational conclusion is that the present theories for wave generation by 
turbulent air flow do not take into account an (as yet unknown) essential wave growth 
mechanism, which enhances the growth rate significantly. Apparently, the failure of 
classical turbulence models and their recent modifications to predict the rate of growth 
of the generated wave satisfactorily means that a different approach is needed to 
resolve this intriguing question. 

Appendix. The solutions in the various layers 
A. 1. The outer layer 

1 1 
8, = we-', 8, = --El(2z)e'--((y+log2)e-", K K 

+ E,(2z) e" + (log z )  e-' dn1. 1 
A.2. The transition layer 

A.3. The intermediate layer 

pl 2 =-w.'1, pl,=;> q4 =w?12+11+a1~+az~-1+~, (~)~ ,  2 K (A6a-c)  

where w,(T) satisfies the equation 
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with 
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